M-math 1st year, final exam, May 7th 2012 Subject: Functional Analysis

Time: 3 hours Max.Marks 100.

- 1. Let (H, < ., .>) be a Hilbert space. Let $A \in \mathbf{B}(H)$. Prove that :
- a) $Ker A^* = (range \ A)^{\perp}$.
- b) $Ker(A^*A) = KerA$.
- c) If dim(H) $< \infty$, then A, A^*A , $\sqrt{(A^*A)}$ have the same rank, i.e., the dimensions of their ranges are the same.
- d) $(Ker A)^{\perp}$ = the closure of range $A^* = \overline{range A^*}$. (3+4+4+4)
- 2. Let (H, < ., . >) be a Hilbert space. Let $A \in \mathbf{B}(H)$.
- a) Show that if A is normal then spr(A) = ||A||.
- b) If A is self adjoint and $A^n = 0$ for some $n \ge 1$, then A = 0. (7+3)
- 3. Show that a Banach space X is reflexive iff its dual X^* is reflexive. (6+9)
- 4. a) Show that every Banach space X is isometrically isomorphic to a closed linear subspace of C(E) where E is a compact Hausdorff space.
- b) Let X = C[0,1], (continuous real valued functions on [0,1]) with the unform norm $\|x\| = \sup_{0 \le t \le 1} |x(t)|$. Its dual X^* may be identified as $X^* \cong NBV[0,1] := \{g: [0,1] \to \mathbb{R}, g(0) = 0, g \text{ of bounded variation and right continuous on}[0,1]\}$, with the total variation norm. Show that if $g \in X^*$ and $g(x) \ge 0, x \in X$, then g is given by a non decreasing function on [0,1]. (Hint : evaluate g(x), where x is the indicator function of (s,t], by choosing an appropriate sequence $x_n \in X$ decreasing to $x \in X$.)
- c) If $\{\mu_n \ n \geq 1\}$ is a sequence of probability measures on [0,1], show that there exists a subsequence $\{n_k\} \subset \{n\}$ and a probability measure μ on [0,1] such that

 $\int_0^1 f(t) \ d\mu_{n_k}(t) \to \int_0^1 f(t) \ d\mu(t), \quad \forall f \in C[0, 1].$

(Hint: identify μ_n as an element of X^* , where X as in b).) (7+6+7)

5. Let X be a Banach space and $A \in \mathbf{B}(X)$. For $t \geq 0$, define $S_t := exp(tA)$. Show that $S_t \in \mathbf{B}(X)$, $S_{t_1+t_2} = S_{t_1} \circ S_{t_2}$, and for all $x \in X$, $\lim_{t \to 0} S_t x = x$. (10)

- 6. Let $X = l_2$ and $\alpha = (\alpha_n) \in l_\infty$. Then show that the diagonal operator $A_\alpha : l_2 \to l_2$, defined as $A_\alpha x := (\alpha_n x_n)$ for $x = (x_n) \in l_2$ is compact iff $\alpha_n \to 0$. (10)
- 7. Let $H:=L^2[0,1]$, (with Lebesgue measure). For $\phi\in L^\infty$, let $M_\phi:H\to H$. Show that $\|M_\phi\|=\|\phi\|_\infty$.
- 8. Let $H=L^2[-1,1]$ (with Lebesgue measure), $A:H\to H, Af(x):=x^2f(x).$ Then $A\geq 0, A\in B(H).$
- a) Show that A has no cyclic vector in H. (Hint: Given $f \neq 0 \in H$, construct $g = g(f) \neq 0 \in H$, such that $\langle g, A^n f \rangle_H = 0 \ \forall n \geq 1$.)
- b) Let H_e and H_o be the closed subspaces of H consisting respectively of the even and odd functions in H. Show that H_e and H_o are orthogonal subspaces of H and each is a cyclic subspace for A. (6+9)